
VDAT-2020
ReARM: A Reconfigurable Approximate Rounding-Based

Multiplier for Image Processing

Rajat Bhattacharjya1, Alish Kanani2, and Neeraj Goel3

rajat.iiitg@gmail.com, kanani.1@iitj.ac.in, neeraj@iitrpr.ac.in

1Dept. of Electronics and Communication Engineering,

Indian Institute of Information Technology Guwahati.

2Dept. of Electrical Engineering, Indian Institute of Technology Jodhpur.

3Dept. of Computer Science and Engineering,

Indian Institute of Technology Ropar.

mailto:rajat.iiitg@gmail.com
mailto:kanani.1@iitj.ac.in
mailto:neeraj@iitrpr.ac.in

Accurate computation is the key to hardware design.

In some domains, approximations in basic computations do not impact
much in overall accuracy of the application.

Motivation

Outline

• Introduction

• Background

• Proposed Methodology

• Experimentation and Results

• Conclusion and Future Works

Introduction

Approximations can be of various levels including software and

hardware level.

Approximate circuits are much faster, smaller and power efficient.

Multiplier is the basic building block in many error resilient

algorithms.

Approximate multipliers can result in good reduction of area and

delay with some loss in accuracy.

Introduction(contd.)

We propose a divide and conquer based algorithm alongside

rounding with configurable accuracy to get desirable accuracy at the

execution time.

Because of adaptive accuracy, our multiplier can be used in various

error resilient algorithms.

We have shown one such application in image processing with

minimal loss of accuracy.

Background

Some basic questions to ask:

• Why make use of rounding?

• Why a divide and conquer approach?

• How is it specifically related to Image processing?

• Overall benefit?

Proposed Methodology

Proposed Design

DIVIDE AND CONQUER

• A is divided into AH and AL

• B is divided into BH and BL

Multiply part by part: AHBH , AHBL ,
AL BH, ALBL

Shift and add:
AHBH <<N + (AHBL +AL BH)<<N/2 + ALBL

Multiplication of One Block

General Equation:
AxB=ARxB + BRxA - ARxBR + (AR-A)x(BR-B)

Approximate Equation:
AxB=ARxB + BRxA - ARxBR

AR, BR are closest powers of 2 of A and B
respectively.

Applying expansion for all four terms,
i.e., AHBH , AHBL , AL BH, ALBL

Closest Power of 2 Pointer(CP2P)

𝑦[𝑛] = 𝑎[𝑛−1] ∙ 𝑎[𝑛−2]

𝑦[𝑖] = 𝑎[𝑛−1] ∙ 𝑎 𝑛−2 ෑ

𝑗=𝑖

𝑛−1

𝑎 𝑗 + 𝑎 𝑖 ∙ 𝑎 𝑖−1 ෑ

𝑗=𝑖+1

𝑛−1

𝑎 𝑗

𝑦[1] = 𝑎 1 ∙ 𝑎 0 ෑ

𝑗=2

𝑛−1

𝑎 𝑗

𝑦[0] = 𝑎 0 ෑ

𝑗=1

𝑛−1

𝑎 𝑗

Generality of the Algorithm

A

AH AL

AHH AHL ALH ALL

B

BH BL

BHH BHL BLH BLL

Experimentation and Results

Error Analysis

Multiplier Type Bit Width ER (%) MRED NED

ILM

8

94.04 0.0282 0.011232

RoBA 94.04 0.0282 0.011232

ALM 99.99 0.51 0.186

ReARM 81.5 0.024 0.0996

ILM

16

99.96 0.0288 0.11164

RoBA 99.96 0.0288 0.11164

ALM 100 0.52 0.19

ReARM 99.7 0.0280 0.1102

P: Accurate product
Papp: Approximate product
D: Maximum Error Distance
L: Number of inaccurate results
N: Number of Test Cases

𝑬𝑹 % =
𝐿

𝑁
∗ 100%

𝑴𝑹𝑬𝑫 =
1

𝑁

𝑁

𝑃 − 𝑃𝑎𝑝𝑝
𝑃

𝑵𝑬𝑫 =
1

𝑁

𝑁

𝑃 − 𝑃𝑎𝑝𝑝
𝐷

Error vs Accuracy Level

Hardware Implementation

Multiplier Type Delay (ns) Area (µm2) Power(µW)

Conventional

Multiplier 4.30 24974.61 2.25e+03

Vedic

Multiplier 4.27 6369.43 1.62e+03

ILM 6.05 3000.59 800.31

RoBA 5.92 729.92 2664.66

ALM 1.92 672.41 66.75

ReARM 5.11 5228.45 1.58e+03

All multipliers described using
Verilog HDL.

Area, power and delay statistics
taken out using Synopsys Design
Compiler with SAED 90nm Cell
Library.

Image Processing Application:
JPEG Compression

JPEG image compression
(a) Lena (256×256) original
image;
(b)Exact Multiplication;
(c) ReARM, PSNR=36.2496
dB & SSIM=0.9751;
(d)ILM, PSNR=34.8836 dB &
SSIM=0.9738;
(e) RoBA, PSNR=34.8836 dB
&SSIM=0.9738;
(f) ALM, PSNR=27.9769 dB &
SSIM=0.8395

Conclusion and Future Work

Main Contributions:
Divide and conquer alongside rounding based reconfigurable
approximate multiplier giving various levels of accuracy, including
accurate multiplication.

Mainly aimed at image processing applications, hence more focussed
on having better accuracy at 8-bit configurations.
JPEG compression results highlight effectiveness of ReARM.

In the future, we’ll investigate techniques so as to support floating
point operations as well.

Thank You

