
Approximating NoCs for Massively Parallel
Error-Resilient Machine Learning Applications

Shilpa Mysore Srinivasa Murthy, Alish Kanani, Mingcong Cao, Deepak Vasudevan

Abstract—Network-on-chip (NoC) interconnect performance is
a significant bottleneck in compute-intensive and communication-
centric massively parallel applications. As parallel workloads be-
come more demanding, it is crucial to prioritize the minimization
of NoC traffic as a critical performance metric. This goal moti-
vates techniques to reduce network traffic, such as approximating
or compressing data during communication between compute
nodes. Approximated data makes the packet size smaller, which
reduces contention and data movement across NoCs.

We present a floating-point precision reduction approximation
scheme applied to machine learning workloads on a system
with heterogeneous compute nodes connected with a NoC. We
analyze machine learning workloads due to their widespread use
in modern computing systems and assume that the interconnect’s
compute nodes are specialized for ML workloads. We see
that even with significant reduction in floating-point precision,
accuracy loss is negligible while power consumption and network
latency improves by ∼1.1×− 2.6×.

I. INTRODUCTION

As processing elements (PEs) become more specialized,
there’s a growing emphasis on efficiently connecting them.
This is particularly important because data for processing
is often stored in on-chip memory due to increasing data
demands. Consequently, there’s a need for more effective
communication networks to handle the complexity of these
PEs and the heterogeneity within the chip. These massively
multicore systems are adopting the NoC interconnection model
to address these challenges [1]. Unlike traditional bus-based
networks, NoCs are asynchronous and peer-to-peer, offering
several advantages, especially as on-chip heterogeneity and
competition for bus resources increase. However, a significant
bottleneck in the overall application performance is still data
movement [2]. As packet sizes increase, network traffic surges,
putting strain on the links and buffers across the interconnect.
Addressing this bottleneck is crucial, especially in the context
of AI-focused computing, which deals with incredibly large
datasets.

A solution emerging from recent research is the concept
of approximate computing [3]. The key understanding is
that numerous applications are inherently error resilient to a
certain degree, allowing for approximate data processing with
minimal loss in accuracy. In the context of NoCs, discarding
information in data payloads often requires incorporating extra
circuitry to detect and eliminate redundant data transfer, thus
optimizing the network’s efficiency [4]–[8].

Modern artificial intelligence (AI) and machine learning
(ML) applications are well-suited for approximate comput-
ing methods [9]. AI-ML algorithms typically process natural
data such as images, audio, or text, which can be modified

or compressed without sacrificing accuracy, thus enhancing
application speed. Given the massive data volumes involved,
parallelizing computation is highly advantageous, making mul-
ticore and heterogeneous architectures particularly beneficial.
Moreover, the end applications are inherently error-resilient,
allowing for simple bit-approximation schemes with minimal
accuracy loss, making them ideal candidates for approximate
computing approaches.

This study will explore the trade-offs within the design
space involving accuracy, network traffic, and power consump-
tion. Section II will delve into the approximation scheme
utilized, the interconnect framework employed to assess the
trade-offs, the selection of various AI-ML workloads as
benchmarks, and the network parameters assigned to each
benchmark. In Section III, we will conduct an evaluation of the
methodology to gauge the effectiveness of the approximation
scheme. Section IV provides alternative approaches found in
the current literature. Finally, Section V concludes the report.

II. METHODOLOGY

In our methodology, we demonstrate the effectiveness of
approximation in NoCs by employing it in selected Con-
volutional Neural Networks (CNNs) workloads. These CNN
models have been trained using the CIFAR10 dataset. Typ-
ically, CNN architectures consist of layered structures, with
each layer performing various common computing tasks such
as convolution, batch normalization, and ReLu activation.
Among these tasks, convolution and linear layers tend to
have the highest computational requirements. Hence, in our
approach, we group other layers with either convolution or
linear layers. This results in a network structure where each
compute layer is connected to the next, with some skip
connections included. We assume that each of these layers
is mapped to specific compute tiles, enabling efficient layer
computation. These tiles are connected using NoC, enabling
pipelined data flow architecture. Since each tile is different
in compute capacity, we assume that the entire system forms
a heterogeneous architecture. Figure 1 illustrates a simplified
network configuration.

A. Approximation Method
To identify an approximation scheme suitable for CNN

workloads, it’s crucial to analyze the operations involved in
these algorithms. In CNNs, each layer processes input data
and passes activations to the next layer, typically represented
as floating-point numbers of varying precision. One straight-
forward approximation approach is precision reduction, which



Fig. 1. The layer-tile mapping method maps neural network layers to different
interconnect tiles. This example shows how a simple CNN with a skip
connection is mapped to 4 tiles.

proves highly error-resilient in these networks. In our study,
we introduce bit dropping as an “Approximation block” at
the end of each layer as shown in Figure 1 This block
effectively reduces the amount of data transmitted to the next
layer. We compare the impact of dropping 4, 8, 12, 16, 20,
22, and 24 bits from the least significant bit position across
different networks and workloads. By comparing the reduction
in accuracy with the decrease in network latency, we assess
the efficacy of the approximation in trading accuracy for
reduced network traffic. We simulate these network traffic
patterns using gem5 HetroGarnet [10], [11]. Additionally,
these reductions in network traffic result in energy savings
within the NoC, which we estimate using the Design Space
Exploration of Networks Tool (DSENT) tool [12].

B. Network Simulation using HetroGarnet [11]:

Translating a CNN into tiles within an interconnect involves
several steps. First, we map layers to appropriate tiles and
model a system of these tiles connected via a NoC that
represents a heterogeneous architecture. For this purpose, we
utilize HetroGarnet, an interconnect network model within
gem5. HetroGarnet leverages gem5’s infrastructure, including
topology, routing, and flit control, to offer a packet-level
simulation framework [11]. Originally it was designed for
simulating cache-coherent traffic within gem5 for multicore
architectures.

The second step is to provide custom network traffic that
accurately represents the workload. We modified HetroGarnet
to accept trace-based traffic instead of the default cache-
coherent traffic. Traces contain essential information such as
the clock cycle when a packet needs to be injected, sender-
receiver router IDs, and virtual network IDs. This information
allows us to model the inputs and outputs of CNN layers as
packets, with payload sizes corresponding to the layer outputs
and inputs. Section III-A provides detailed descriptions of
specific network configurations and topology selections.

TABLE I
CNN WORKLOADS AND CORRESPONDING MESH TOPOLOGY

Workload Compute Layers Network Topology

VGG19 17 6x3
ResNet18 21 6x4

PreActResNet18 18 6x3
Mobilenet 28 6x5

Densenet121 120 12x10

Tile 2 Tile 3

Tile 4 Tile 1

Fig. 2. The 4 mapped tiles that are highlighted correspond to the ones
in Figure 1. The different relative sizes highlight the heterogeneity of the
compute tiles.

C. Trace Generation: Layer to Tile Mapping

Generating a trace involves mapping various layers and
data operands to appropriate tiles and packet payloads. We
employ a layer-tile mapping method that aims to balance the
latency of processing a batch of data for each tile. Figure 2
illustrates the layer-tile mapping for a simple CNN depicted
in Figure 1. Where different CNN layers are mapped to
different tiles, ensuring that each tile contains at most one
“high-computational-cost” layer. To achieve this mapping, we
initially cut all possible edges in the neural network to obtain
subgraphs. Subsequently, we merge two connected subgraphs
if the resulting merged graph contains fewer than one high-
computational-cost layer. This merging process is repeated
until no further subgraphs can be merged. Each resulting
subgraph is then assigned to a compute tile. This algorithm
effectively transforms a graph of CNN layers into a graph
of interconnected compute tiles. The CNN workloads and
corresponding network topology are detailed in Table I. The
packet payload between two tiles can then be calculated from
the output activation tensor shape represented by the directed
edge connecting them. Specifically, the traffic payload for a
tensor of shape x× y × z × b is given by:

sizepayload = BitsFloating−Precision × x× y × z × b (1)

Where x − y are 2-D dimensions of the output activation, z
is number of channels and b is the batch size.

We generated the source-destination tile pairs with the
packet payload. Now, we need to determine the timing of
packet injection. To accomplish this, we make the following
assumptions: i) each packet comprises 8 flits, where each
flit can carry 128 bits ii) one flit is injected per simulation
cycle iii) packets are injected simultaneously from each tile.
Based on these assumptions, a straightforward algorithm can
iterate through all source-destination tile pairings and assign a
simulation tick number, providing timing information for each
source-destination pair. Additionally, we assume there is only
one virtual network in the network topologies under study.
Given the presence of skip connections in the CNNs, we em-
ploy 3 virtual channels to mitigate head-of-line blocking. We



assume table-based shortest path routing algorithm balancing
all link utilization.

D. Power Estimation using DSENT [12]:

One of the main benefits of this approximation algorithm
is that there is no overhead involved with dropping bits
while there are large savings with reduced data movement.
Quantifying the power reduction will give us an estimate of
the energy efficacy of this approximation. To this end, DSENT
is a framework that is used to evaluate the power consumed by
the links, routers, and buffers [12]. DSENT takes the output
statistics from the HetroGarnet simulation, and generates the
dynamic and leakage power. It reports this as a total power,
which is then used along with the total simulation duration to
obtain an estimate of the energy consumed in the transmission
of all packets.

Each workload outlined in Table I has a specific number
of compute layers. Correspondingly, the chosen topology for
each of these networks is the nearest integer of the form a× b
to the compute layers. The reason for this choice instead of
a single topology size (E.g: 12x10 for all workloads) is that
DSENT reports leakage and dynamic power for every tile.
This would skew the total power estimate when considering
workloads with fewer compute layers. We justify choosing
different topology sizes as it is equivalent to power gating the
unused tiles of a larger topology, thus giving a more realistic
runtime power estimate. Energy consumption by individual
components, as well as the complete interconnect quantify the
savings from a precision reduction approximation scheme.

III. EVALUATION

A. Experimental Setup

We use 5 CNN workloads: VGG19, ResNet18, PreActRes-
Net18, MobileNet, and DenseNet121, to validate the perfor-
mance of the approximation scheme. For these 5 workloads,
the inter-layer payloads are calculated, so that the layer-tile
mapping step can be carried out.

The trace is built from this data, which the modified Het-
eroGarnet uses for network simulation. As mentioned earlier,
we consider only one virtual network with 3 virtual channels.
The topology parameters are set according to Table I in the
HeteroGarnet build process for each workload. DSENT is
then run on a 32nm node at 1GHz frequency, using the
output statistics from HeteroGarnet to estimate the power
consumption in the links and routers.

B. Accuracy Analysis

The main tradeoff with the approximation scheme is model
output accuracy. We assume that data payload is of 8 flits
per packet, where each flit can carry 128-bits. When using
precision reduction, the size of the inter-layer tensors i.e.,
number of floating point numbers is reduced. We compare the
model outputs before and after approximation to evaluate the
accuracy degradation. Figure 3 shows that for all workloads,
accuracy is maintained extremely evenly with bit-reductions,
until 20-bits are dropped. This can be attributed to the fact

0

2 0

4 0

6 0

8 0

1 0 0

Ac
cu

rac
y (

%)

W o r k l o a d s

# b i t s  d r o p p e d 0 4 8 1 2 1 6 2 0 2 2 2 4

   V G G 1 9       R e s N e t 1 8    P . A . R e s N e t 1 8  M o b i l e n e t  D e n s e n e t 1 2 1

Fig. 3. Accuracy of different workloads for a specific number of least
significant bits dropped.

0 . 0 E + 0
2 . 0 E + 4
4 . 0 E + 4
6 . 0 E + 4
8 . 0 E + 4
1 . 0 E + 5

2 . 2 0 E + 5
3 . 3 0 E + 5
4 . 4 0 E + 5
5 . 5 0 E + 5

La
ten

cy
 (#

Cy
cle

s)

W o r k l o a d s

# b i t s  d r o p p e d 0  4 8 1 2 1 6 2 0 2 2 2 4

V G G 1 9    R e s N e t 1 8    P . A . R e s N e t 1 8  M o b i l e n e t  D e n s e n e t 1 2 1

Fig. 4. End-to-end network latency of different workloads for a specific
number of least significant bits dropped. Note that DenseNet121’s plot is
scaled down to fit within the same window.

that the IEEE single-precision floating-point standard has a 23-
bit mantissa. As the number of least significant bits dropped
crosses 20, most of the mantissa is removed and this drastically
degrades accuracy.

C. Interconnect Performance

We evaluate the performance of the interconnect after the
application of the approximation scheme with end-to-end
network latency and energy consumption.

1) Latency: We primarily look at the end-to-end commu-
nication latency, which is the total cycles, within which all
the packets specified in the trace complete their source to
destination traversal. Figure 4 shows a decreasing trend across
all workloads for network latency as the precision reduction
increases. This is to be expected, as the bit-reduction reduces
the network traffic, reducing congestion, and subsequently
reducing latency across all packet flows. HeteroGarnet also
reports the average flit latency, which follows an identical trend
to the end-to-end communication latency.



0
1 0
2 0
3 0
4 0
5 0

6 6 0
9 9 0

1 3 2 0
1 6 5 0

En
erg

y (
µJ

)

W o r k l o a d s

# b i t s  d r o p p e d 0 4 8 1 2 1 6 2 0 2 2 2 4

V G G 1 9    R e s N e t 1 8    P . A . R e s N e t 1 8  M o b i l e n e t  D e n s e n e t 1 2 1

Fig. 5. Energy consumption of different workloads for a specific number of
least significant bits dropped. Note that DenseNet121’s plot is scaled down
to fit within the same window.

2) Energy Consumption: DSENT provides dynamic, leak-
age, and total power consumption for buffers, routers and links.
When combined with the number of total simulation cycles, we
are able to compute the energy consumption from the average
power numbers provided by DSENT. This energy consumption
is plotted in Figure 5 across all 5 workloads. Similar to the
latency plot, there is a decreasing trend with increasing bit-
reduction. This trend is also expected, although with the caveat
that the average leakage, dynamic, and total power remains the
same before and after bit-reduction. The energy consumption
reduction comes as a consequence of the reduction in active
time of the network i.e., network latency, during which power
is consumed.

IV. RELATED WORKS

Several approaches have been proposed to enhance the per-
formance of NoCs, focusing on reducing traffic and optimizing
data communication in compute-intensive and communication-
centric applications. By leveraging high voltage for critical
data and lower voltage for less critical data, AxNoC effec-
tively manages power consumption while maintaining reliable
communication [4]. Although it enhances fault tolerance, it
primarily focuses on voltage-based strategies rather than data
approximation techniques. The Approx-NoC framework offers
a solution for reducing NoC traffic by employing data com-
pression techniques with software-programmable accuracy [5].
It does so through lossy compression, which leads to inaccu-
racies in data transmission. Axba [7] is another recent work,
which presents a comprehensive framework for designing
approximate bus architectures in chip multiprocessors (CMPs).
By utilizing configurable parameters to balance accuracy and
energy efficiency Dapper introduces an approximation archi-
tecture tailored for GPUs [8].

Unlike the aforementioned papers, our work specifically
targets the optimization of NoC communication for ML
workloads. We propose a simple yet effective approximation
scheme that reduces floating-point precision, thereby mini-
mizing data size and traffic within the NoC. Importantly,

unlike existing approaches, our method incurs no overhead
in the critical path of data communication, ensuring efficient
and accurate transmission without compromising performance.
Additionally, while previous works introduce approximation
with varying degrees of overhead, our approach stands out by
directly addressing the unique requirements of ML workloads
within the NoC domain.

V. CONCLUSION

In this study, we have presented a novel approach to
optimize NoC communication for AI-ML workloads through
precision reduction as an approximation technique. Through
empirical evaluation, we observed remarkable improvements
in performance metrics compared to conventional NoC archi-
tectures. Specifically, our precision reduction approximation
technique led to a notable reduction in network latency and
energy consumption, with observed improvements ranging
from 1.1× to 2.66× without a significant drop in accuracy.
Looking ahead, our work paves the way for further exploration
into approximation techniques tailored for specific applica-
tion domains, facilitating the development of more efficient
and scalable NoC architectures for emerging computational
paradigms. REFERENCES

[1] J. Vasiljevic et al., “Compute substrate for software 2.0,” IEEE micro,
vol. 41, no. 2, pp. 50–55, 2021.

[2] G. Krishnan et al., “Siam: Chiplet-based scalable in-memory accel-
eration with mesh for deep neural networks,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1–24, 2021.

[3] T. Moreau et al., “A taxonomy of general purpose approximate com-
puting techniques,” IEEE Embedded Systems Letters, vol. 10, no. 1, pp.
2–5, 2017.

[4] A. B. Ahmed, D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano,
“Axnoc: Low-power approximate network-on-chips using critical-path
isolation,” in 2018 Twelfth IEEE/ACM International Symposium on
Networks-on-Chip (NOCS). IEEE, 2018, pp. 1–8.

[5] R. Boyapati et al., “Approx-noc: A data approximation framework
for network-on-chip architectures,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017, pp. 666–677.

[6] D. Deb, M. Rohith, and J. Jose, “Flitzip: Effective packet compression
for noc in multiprocessor system-on-chip,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 33, no. 1, pp. 117–128, 2021.

[7] J. R. Stevens, A. Ranjan, and A. Raghunathan, “Axba: An approximate
bus architecture framework,” in 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[8] V. Y. Raparti and S. Pasricha, “Dapper: Data aware approximate noc
for gpgpu architectures,” in 2018 Twelfth IEEE/ACM International
Symposium on Networks-on-Chip (NOCS). IEEE, 2018, pp. 1–8.

[9] D. Kalamkar et al., “A study of bfloat16 for deep learning training,”
arXiv preprint arXiv:1905.12322, 2019.

[10] J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,” arXiv
preprint arXiv:2007.03152, 2020.

[11] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, “Kite: A family of
heterogeneous interposer topologies enabled via accurate interconnect
modeling,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[12] C. Sun et al., “Dsent-a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip. IEEE,
2012, pp. 201–210.


